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Numerical solution for the flow around a cylinder 
at Reynolds numbers of 40,200 and 500 
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Yinite difference solutions for the time dependent equations of motion have been 
carried out in order to extend the range of available data on steady flow around 
a cylinder to larger Reynolds numbers. At the termination of the calculations for 
R = 40 and 200, the separation angle, the drag coefficient and the pressure and 
vorticity distributions around the surface of the cylinder were very close to their 
steady-state values. For R = 500 the separation angle and drag coefficient were 
very close to their steady-state values but the pressure distribution and vorticity 
distribution at the rear of the cylinder were still changing slightly. The results at  
R = 500 were found to be quite different from those at  R = 200 so it is not clear 
how closely we approximated the steady solution for R+m. The forces on the 
cylinder due to viscous drag and due to pressure drag are found to be smaller for 
steady flow than for laboratory experiments where the wake is unsteady. 

1. Introduction 
Although a large number of numerical calculations of the flow around a 

cylinder have been presented in the literature, no reliable steady flow solutions 
have been obtained for Reynolds numbers greater than 50. This paper reports on 
some of the results of finite difference calculations of the time dependent equa- 
tions of motion at R = 40, R = 200 and R = 500 for the case of a fluid of infinite 
extent. The outer boundary, roo, used for the calculations was large enough that 
at the termination of the calculation the wake from the cylinder had not yet been 
convected to rm. Actually the flow field never becomes steady since the wake 
continues to grow. The goal was to terminate the calculations at  sufficiently large 
times that the velocity field near the wall, the pressure field at  the wall, and, 
hopefully, the length of the wake bubble had closely approached the values they 
would assume at  infinite time. The papers by Pearson (1965) and by Wilkes & 
Churchill ( 1966) have been particularly useful for these calculations. 

The first successful numerical solution of the complete equations of motion in 
two dimensions was obtained by Thom (1928) for flow around a circular cylinder 
at  Reynolds number, R = 10. Later Thom (1933) improved his numerical method 
by a transformation of the physical plane and obtained a solution at R = 20 
which agrees with available experimental results. Kawaguti (19533) and Apelt 
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(1961) used slightly modified versions of Thom’s method to carry out calculations 
at  R = 40. Allen & Southwell (1955) used a relaxation technique to obtain solu- 
tions for R = 0, 1, 10, 100 and 10,000. Dennis & Shimshoni (1965) reduced the 
equations of motion to a series of ordinary differential equations and solved these 
by a numerical method over the range of R from 0.01 to lo5. Allen & Southwell 
found that the length of the vortices behind the cylinder starts to decrease 
between R = 10 and R = 100 and Dennis & Shimshoni found a decrease after 
R = 30. Since these results seem to be in disagreement with experiment 
the accuracy of their calculations at  high Reynolds numbers has been 
questioned. 

The numerical solutions discussed above have been obtained using the equa- 
tions of motion for a steady flow. Payne (1958) carried out a numerical integration 
of the time dependent equations of motion at  R = 40 and at  R = 100 but did not 
proceed far enough to reach steady state. Kawaguti & Jain (1966) reported 
numerical solutions of the time dependent equations for R = 10, 20, 30, 40, 50, 
60 and 100. Steady state was reached for R = 10, 20, 30, 40 and 50. 

Thoman & Szewczyk (1966) solved the time dependent equations for R = 1 to 
R = 1 x lo6. Steady flow solutions were obtained at  large times for R = 1 and for 
R = 30. At larger Reynolds numbers antisymmetric disturbances were intro- 
duced after the solutions had been carried out to a certain dimensionless time. 
The disturbances caused alternate shedding of the vortices behind the cylinder 
and the formation of a vortex street. 

The motivation behind the research described in this paper was to obtain some 
insight into the nature of the steady flow field at infinite Reynolds number. Since 
an analytical solution of the Navier-Stokes equations is not available a number 
of models have been suggested which could provide a basis for calculating the 
flow field. Confirmation is lacking since laboratory studies at  high Reynolds 
numbers usually involve unsteady flows. 

The model of Kelvin and Helmholtz (Kawaguti 1953a; Squire 1934) assumes 
that the wake is enclosed by two free-streamlines which are idealized shear layers. 
The fluid inside the wake is assumed to have zero velocity and to be at  the same 
pressure as the free stream. Batchelor (1956) suggested that the wake is closed, 
finite and of uniform vorticity. Acrivos, Snowden, Grove & Peterson (1965) were 
able to obtain steady flows up to a Reynolds number of 180 by placing a splitter 
plate in the wake of the cylinder. On the basis of these experiments they suggested 
that at infinite Reynolds number the wake bubble is viscous, that it has an 
infinite length and a width of the order of magnitude of the cylinder diameter, 
and that the pressure coefficient at  the rear stagnation point is approximately 
equal to - 0.45. 

Unfortunately we were not completely successful in attaining our original 
goals. The flow at R = 500 is found to be significantly different from the flow at 
R = 200 so it is not clear how closely the results approached the asymptotic 
behaviour for R + co. 
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2. Numerical procedures 

function, $, are 
The equations describing the variation of the vorticity, 5, and the stream 

where the terms have been normalized using the radius of the cylinder, a, and the 
velocity of the fluid at infinity, U,. The Reynolds number is defined as 
R = 2aU&. The angle 6' is measured from the rear of the cylinder. The boundary 
conditions are 

$ = a$/& = 0 for r = 1, (3) 

<-to, $-trsinO for r-too, (4) 

$ =  < =  0 for 6 ' =  0 ,n.  ( 5 )  

Since it is desirable to have a finer mesh near the cylinder surface the following 
transformation of the independent variables has been made 

r = enE, 7 = 0ln. ( 6 )  

The defining equations then become 

for [ = l ,  (9) 

5+0, $+enCsinq as ~-+cQ,  (10) 

$ = g = O  for 7 = 0 , 1 ,  (11) 

E = neng. (12) 

Figure 1 shows a portion of the network of grid points. Let n denote the number 
of time steps and AT, the size of the time step. The scheme for advancing the 
solution from time nAr to time ( n  + 1) AT consists of calculating new values of 
the vorticity, gtT1, at all grid points from the finite-difference approximation of 
(7) ,  the boundary conditions and the values of the vorticity, gtj, and the stream 
function, $Zj, from the previous time step. New values of the stream function 
$2;' are calculated for all grid points by using the finite-difference approxima- 
tion of (8)) the boundary conditions, the new values of the vorticity gzT1, and the 
old values of the stream function $t j. 

24-2 
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An alternating-direction-implicit method developed by Peaceman & Rachford 
(1955) is used to calculate values of the vorticity at  the new time step. The 

FIGURE 1. The grid structure. 

method divides the time step, AT, into two half-steps, QAT, and the following two 
finite-difference approximations are obtained: 

Equations (13) and (14) are implicit in the 7- and t-directions. Their solutions 
are obtained by the method of Thomas (Lapidus 1962). 

The solution of the stream function equation is obtained by the extrapolated- 
Liebmann method (Fox 1962; Lapidus 1962). The finite difference approximation 
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to (8) is 

373 

1 1 
x [ F  ($?+l,j + Xj) + @ ($5+1+ $ Z l )  - E"5;If'I , (15) 

where @Tj and $TT1 are the approximations to the stream function at  the mth 
and (m + 1)th iteratioil and a is the relaxation factor. The equation proposed by 
Russel (1962), 

(16) 
2 a -  

O - 1 +7r[(1-2+J-2)/2]f' 

has been found to give a good value of a. The quantities I and J are respectively 
the number of meshes in 7- and (-directions. The extrapolated-Liebmann method 
consists of applying (15) at every internal mesh point in regular succession. The 
points are scanned row by row from left to right starting from the row next to the 
boundary and going up the paper (see figure 1). This completes one iteration. The 
procedure is repeated until values of the stream function in two successive 
iterations satisfy the equation 

at  all interior grid points. 
The vorticity distribution around the surface of the cylinder must be known 

in order to carry out the finite difference calculations. It is obtained from the 
values of + near the wall. The Taylor series expansions for the stream function at 
points given by the co-ordinates (i, 2) and (i, 3) shown in figure (1) are 

l $ ~ y - $ ~ j l  < 10-6 (17) 

These two equations, together with (8) and the boundary conditions 

$i,l= (z) a$ = 0 and (3) = o  
i ,  1 i, 1 

(20) Wi, 2 - @i, 3 yield the following relation & l  = 2E2k2 . 

The value of $ at the outer boundary of the grid tm should be given by the follow- 

$,i, J+l = e n L  sin q. (21) ing equation as Em -+ tx) 

The procedure used in this study was to select (a large enough so that it is 
justified to use (21). 

The pressure variation around the surface of the cylinder is given as 

4 7 ag q=o = - (%) dq  + constant, 
5=0 

where the pressure has been normalized with respect to &U&. The contribution 
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of the pressure forces to the drag coefficient is 
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c, = 1; +o cos e ae. 
The frictional contribution to the drag coefficient is calculated as follows 

Cg;=o sin eae. 

The total drag is defined as C, = C, + C,. ( 2 5 )  

3. Computational procedure 

point by using the potential flow solution, 
The initial values of $ are obtained by calculating $$, at every interior grid 

and by then applying (15) along with the appropriate boundary conditions until 
(17) is satisfied. For this computation, the values of ci, are assumed to be zero. 
The initial values of the vorticity a t  the wall are next computed from (20), and 
t& = 0 for the rest of the flow field. 

Time is stepped by Ar, and new values of the vorticity are computed from 
(13) and (14). The new values of the stream function are computed by applying 
(15) repeatedly until (17) is satisfied. The new values of the vorticity at the 
boundary are calculated using (20). The above procedure is repeated for 
successive Ar. 

The computations were carried out on the University of Illinois IBM 7094 and 
IBM360/Model 50/75 computers. The dimensionless time step used in all runs 
was 0-04 and the solutions were carried out to the dimensionless times shown in 
table 1. The total computer times for the IBM360/Model 75 are also given in 

Number of 
net Computer 

points t h o  

R 1 k rco 7 fh) 

40 3 0  0.025 59.4 41.9 1643 3 
200 _ ~ _  4 0  0.01 152.4 56.1 6601 7 
500 ___ 0 0  0.007 157.3 67.4 14,091 19 

40 2- 3 0  0.03 11 1.3 50 1581 - 
2- 

1 

1 

TABLE 1. Summary of parameters used in calculations 

table 1 along with the parameters 1, k and r,  used in the calculations. The 
reciprocal of 1 represents the number of increments in the 0 direction. 

The effect of rm was examined only for R = 40. A change from 11 1.3 to 59.4 
had only a very slight effect on the results of the calculation. 
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4. Results 
Reynolds number = 40 

For R = 40, a small eddy was first observed at  r = 0-7. The radial distance from 
the centre of the cylinder to the tip of the eddy, r,, increased at the rate shown 
in figure 2. At 7 = 22, the eddy attained its full length, r, = 6.0. This is in 
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FIGURE 2. The development of C,,, t,,, CD, 8, and rw with 7, R = 40. 

excellent agreement with the value, r, = 6.03, obtained by Kawaguti & Jain 
(1966) at the same Reynolds number for 7 = 24. The length is much longer than 
the rur = 4-5 obtained by Kawaguti (1953 b )  and the r, = 5.27 obtained by Apelt 
(1961) by solving the equations of motion for steady state. These differences have 
been explained by Kawaguti & Jain (1966) as due to the coarseness of the mesh 
used by Apelt and by Kawaguti in their solutions of steady-state equations. The 
streamlines at  7 = 50 are plotted in figure 3. This plot compares favourably with 
the photograph of the flow pattern obtained by Taneda (1956) at R = 42. 

Figure 2 also shows how the separation angle, O,, the maximum and minimum 
values of the vorticity, Cmax and Cmin, and the drag coefficient vary with time. The 
separation point reaches a steady value of 53.9" as early as r = 28. This is to be 
compared with values of 50.0", 52.5" and 53-7" obtained by Kawaguti (1953a, b ) ,  
Apelt (1961) and Kawaguti & Jain (1966). The rate of change of Cmax, hi, and C, 
was rather slow but the values at  r = 50 seem close to steady state. The develop- 
ment of the vorticity distribution and pressure distribution around the surface 
is shown in figures 4 and 5 .  The pressure term appearing in the ordinate in 
figure 5 is relative to the pressure at  the rear stagnation point. 
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Reynolds number = 200 
At R = 200 the eddy was first observed at  r = 0.36. The streamline patterns at  
an early time, T = 5.3, and at the end of the computation, T = 56.1, are shown in 
figures 6 and 7. The length of the wake bubble was difficult to determine at  large 
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FIGURE 3. Steamlines, R = 40, r = 50. 
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FIGURE 4. The development of surface vorticity distribution, R = 40. 

times because of the large distances between grid points in the angular direction 
at large values of r. For this reason the values could be in error. The length rw is 
estimated to be 13 at r = 56.1. 

Figure 8 shows the change of O,, 15,,,, &,,in, r,  and C, with time. The separation 
angle, 0,, approaches a steady value of 75” at an early time, r = 25. All of the 
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FIGURE 5. The development of surface pressuro distribution, R = 40. 
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FIGURE 6. Streamlines, R = 200, 7 = 5.3. 
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FIGURE 7. Streamlines, R = 200. 7 = 56.1. 
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other quantities, with exception of T,, approached steady values at  r = 45. The 
development of the vorticity distribution and the pressure distribution around 
the surface is shown in figures 9 and 10. Of particular interest are the two minima 
in the wall vorticity which eventually appear in the wake and which persist up 
t o  steady state. 
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FIGURE 8. The development of c-,, cU,,, C,, BS and r ,  with r, R = 200. 
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FIGURE 9. The development of surface vorticity distribution, R = 200. 
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Reynolds number = 500 
The calculation for R = 500 was terminated at T = 67.4. Streamline patterns at 
T = 8.3 a,nd T = 67-4 for R = 500 are shown in figures 11 and 12. As was the case 
for R = 200, the length r,, was difficult to determine at large values of r. At 
T = 67.4 it is approximately equal to  10. This is slightly smaller than the value 
of 13 determined for R = 200, r = 56.1. 

sg 
9 -m 

G 

20 40 60 80 100 120 140 160 180 

$ 
FIGURE 10. The development of surface pressure distribution, R = 200. 
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FIGURE 11. streamlines, R = 500, T = 8.3. 

Two interesting features about the wake bubble at R = 500 are the pronounced 
fattening of the wake and the appearance near the separation point ofa secondary 
vortex which rotates in the opposite direction of the main vortex. This vortex was 
first observed at  r = 2.78 and can be seen in figure 11 as a line of 7,b = 0. It 
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decreased in size after attaining its maximum dimension and disappeared at 
T N 56. Secondary vortices have also been observed by Thoman & Szewczyk 
(1966) in their numerical calculations. The calculated streamline patterns for 
small T are similar to photographs obtained by Schwabe (1935) of the early 
vortex formation. 

0.0 . . . . . . . . . . . . . . . . . . . . . . 

FIGURE 12. St,reamlines, R = BOO, 7 = 67.4. 
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7 

FIGURE 13. The development of cm,, cdn, C,, 8, and r ,  with 7, R = 500. 

The change of Cmax, din, C,, 0, and r,, with time is shown in figure 13. The 
vorticity distribution and pressure distribution are shown in figures 14 and 15. 
At the completion of the calculation, 7 = 67.4, the drag coefficient, C,, and the 
separation angle, O,, appear very close to their steady-state value. However, the 
pressure distribution and vorticity distribution appear to  be undergoing some 
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FIGURE 14. The development of surface vorticity distribution, R = 600. 

i 
FIGURE 15. The development of surface pressure distribution, R = 600. 
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slight changes. The vorticity distribution at  r = 3-18 clearly shows the secondary 
vortex in the wake as a region of positive vorticity. Again it is of interest to note 
the two minima in the vorticity that exist in the wake. Pressure distributions 
obtained by Schwabe (1935) for a cylinder started impulsively from rest at  
R = 560 are simiIar to those shown in figure 15. 

1 . 4 - '  I ' I I ' ' '  ' ' I ' I I ' I -  
0 0 0  - o o  - 

I I I I I I I I I I I I I I I I I I I I  
0 20 40 60 80 100 120 140 I60 180 

4 
FIGURE 16. Comparison between numerical calculations and measurements (vorticity 
distribution). Numerical solution: -, this study, R = 200. Experimental measurements : 
0, Dimopoulos & Hanratty (1968), R = 219, no splitter plate; 0 ,  Dimopoulos & 
Hanratty (1968), R = 210, 4 in. splitter plate. 

The effect of the wake on the vorticity distribution is further illustrated in 
figure 17 where calculations for R = 40, R = 200 and R = 500 are presented, It 
is seen that in the neighbourhood of the front stagnation point the vorticity is 
significantly lower than that which would be predicted by boundary layer theory 

5. Comparison with laboratory experiments 
The calculated vorticity distribution at R = 200 is compared with measure- 

ments by Dimopoulos & Hanratty (1968) in figure 16. The calculations for steady 
flow are significantly lower than the measurements in the front portion of the 
cylinder. However, there is some similarity between the calculations and 
measurements in the rear of the cylinder. The differences are interpreted as being 
the result of unsteadiness in the experimental wake. The introduction of a splitter 
plate reduced the difference. However, it appears that the splitter plate did not 
completely stabilize the wake, even though i t  did eliminate periodic vortex 
shedding. 
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using the potential solution for the external flow. The difference at  R = 200 and 
at  R = 500 is interpreted as a consequence of the existence of a relatively thick 
wake. Because of this thick wake the flow approaching the cylinder effectively 
‘sees’ a body of different dimensions than the cylinder. 

In  figure 18 separation points obtained from numerical calculations are com- 
pared with measurements. The agreement is good. 

1.2 
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-8s 0.6 
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0 20 40 60 80 100 120 140 160 180 

4 
FIGURE 17. Late time vorticity distributions. 

R 
FIGURE 18. Comparison between numerical calculations and measurements (6J. Numerical 
solution: 0, this study; 0, Kawaguti & Jein (1966); 0, Apelt (1961); v, Kawaguti 
(1953b); A, Thorn (1928). Measurements: shaded area, with and without splitter plate. 
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Calculated drag coefficients are compared with experimental values in figure 19 
and tabulated in table 2. The values for R = 40 and R = 500 from this study are 
an extrapolation for T+W,  obtained by plotting CD versus 117. The agreement 
for R < 60 is good. The larger values of CD observed in the experiments for 
R > 60 are interpreted as due to instabilities in the wake. As can be seen from 

R 

FIUURE 19. Comparison between numerical calculations and measurements (CD).  Numerical 
solution: 0,  this study; 0, this study, extrapolated; 0, Kawaguti & Jain (1966), extra- 
polated; 0, Apelt (1961); v,Kawaguti (1953b); A, Thom (1928); @, Thoman & Szewczyk 
1966) ; -, measurements by Relf. 

R C D  cPlcD 

40 1.51 0.660 
200 0.924 0.794 
500 0.60 0.85 

TABLE 2. Calculated drag coefficients for T + 03 

the comparison of calculated and experimental vorticity distributions in figure 16 
the calculated frictional drag can be expected to be smaller than the experi- 
mental. However, this decrease is not large enough to account for the differences 
shown in figure 19. For example, the numerical solution a t  R = 200 yields a value 
of Cf = 0.19, whereas the experimental value of Cfis approximately equal to 0.28. 
The influence of the wake structure on the form drag, C,, is the main cause of the 
smaller drag coefficients obtained for a completely steady wake. A comparison of 
the pressure distribution measured by Thom (1933) at R = 174 with the calcu- 
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lated one a t  R = 200 is shown in figure 20, where it has been assumed that 
(P- Pm)/(&pUL) a t  the front stagnation point is the same for the two cases. It is 
seen that the experimental pressure distribution has a significantly lower 
minimum. 

Support for this research was received from the donors of the Petroleum 
Research Foundation administered by the American Chemical Society. 
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FIGURE 20. Comparison of measured and computed pressure distributions. 
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